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Abstract

(/raph partitioning is a topic of extensive interest, with applications to parallel processing. In

this context graph nodes typically represent computation, and edges represent communication.

One seeks to distribute the workload by partitioning the graph so that every processor has

approximately the same workload, and the communication cost (measured as a fimction of
edges exposed by the partition) is minimized. Measures of partition quality vary; in this paper

we consider a processor's cost to be the sum of its computation and communication costs, and

consider the cost of a partition to be the bottleneck, or maximal processor cost induced by the

partition. For a general graph the problem of finding an optimal partitioning is intractable.

In this paper we restrict our attention to the class of k-ary n-cube graphs with uniformly

weighted nodes. (liven mild restrictions on the node weight and number of processors, we

identify partitions yielding the smallest bottleneck. We also demonstrate by example that some
restrictions are necessary for the partitions we identify to be optimal. In particular, there exist

cases where partitions that evenly partition nodes need not be optimal.

*This research was partially supported by the National Aeronautics and Space Administration under NASA
contract number NAS1-19480 while the author was in residence at the Institute for (:omputer Applications in Science
and Engineering (I(:ASE), NASA Langley Research (:enter, Hampton, VA, 23681.





1 Introduction

The woblem of assigning workload in a parallel system has long been viewed as ilnportant, and

in the general case, as intractable. A significant amount of research has addressed the problem of

finding good, if not optimal, workload mappings; a lmml)er of different objective flmctions have

been used. All relevant objective flmctions recognize that the quality of both load balance and com-

munication costs are iml)ortant. While workload imbalance is generally defined as a large deviation

between the maximum and average load among processors, treatments of communication costs dif-

fer. A common technique is to measure the communication cost as the sum of all communication

induced by the mapping. While this sometimes leads to more tractable treatments (e.g. [8, 12]), it

does not capture the fact that communication can happen in parallel. An alternative formulation is

to assess the sum of computation and comlnunication for each processor, and measure the quality

of the mapping as the maximum processor load, or bottleneck [5, 13]. The bottleneck measure does

not take precedence relationships into consideration, and so is most useflfl in highly data-parallel

computations where processors typically cycle through coml)utation and communication phases.

In this paper we assume that a very regular graph--a k-ary n-cube[6]--describes the colnputa-

tion and communication needs of a data-parMlel problem. Each node in the graph represents some

piece of computational work, which we assume takes w time to perform. Each edge (i, j) represents

some implicit communication necessary between nodes i and j; typically such an edge reflects a

data dependency of node i's computation for the 1)resent iteration on the result of executing node

j in the previous iteration (and vice-versa). The edges may be viewed as communication that

lnust occur at the end of an iteration. We desire to partition the graph into p node sets, assigned

one per processor, so as to minimize the bottleneck cost. The 1)roblem is not entirely academic.

Several current parallel architectures have colnmunication topologies based on the k-ary n-cul)e.

The problem of partitioning a communication topology arises, for instance, when one executes a

parallel simulation of traffic on a k-ary n-cube network [7, l].

The objective of this paper is to show that under mild restrictions on w and p, the optimal

partition is intuitive, one that equi-t)artitions the graph into node sets that are internally clustered

as tightly as possible. The main requirement turns out to be that p be large enough relative to the

size of the k-ary n-cube. The central point of interest is that restrictions on .w and p arc needed;

while intuitive, our results are not at all immediate. We also point out that previous analyses of

partitioning regular grids (lifter from the current work in an subtle but lint)errant way. It is not

the objective of the paper to give new partitioning algorithms, but to clarify one's intuition about

partitioning k-ary n-cubes.

There are three bodies of work on graph partitioning that bear discussion. The technique of

recursive spectral dissection (e.g., [2]) divides a graph into two pieces, based on an eigenvalue

analysis of a lnatrix describing the graph connectivity. The algorithm is applied recursively until

p = 2 j node sets are defined. Each partition cut is guaranteed to achieve a certain level of load

balance (not necessarily perfect balance), with a guaranteed ul)per bound on the number of edges

cut. Spectral dissection may find some of the partitions we identify as optimal (when k is a power

of two), hut is not guaranteed to find them _. Recursive geometric partitioning (e.g. [9]) is similar

in spirit, but different in details. A graph in 7_'_ is projected onto the unit sphere in 7_ '_+_, and the

projection is stretched to locate the center of mass (approximately) at the sphere's origin. A great

l Personal communication from Alex Pothen.



circle cut of the sphere partitions the node set into two pieces. The technique also guarantees a

certain level of load l)alance and bounds the number of edges cut. Like spectral partitioning, the

method may find the optimal partitions (in the same special case of k being a power of two), but

also may not. On the other hand, recursive binary dissection [3] (and its extension, parametric

recursive binary dissection [4]) will find the partitions we identify as optimal, when k is a power

of 2. In the case of general graphs there is no such guarantee. The heuristic described in [11] is

shown there to find o])timal partitions of N2,,_, and obvious extensions to heuristic described in [10]

will find all optimal partitions identified in this paper, provided the correct number of processors

in each (limension are supplied in the l)roblem description.

2 Problem Formulation

A k-ary n-cube Nk,n is a graph with k '_ nodes, with an edge defined between two nodes i and j

if, in the base-k number system, the expressions of i and j differ in at most one digit, and differ

there (modulo k) by exactly 1. Thus, if i = b_-lb,_-2...bo is the base-k representation, then in

each dimension j = 1 .... ,n, i shares an edge with i r = b,_-lbn-2 " .(bj + 1) rood k bj-l ...bo and

with in = b,_-lb,__2...(bj - 1) rood k bj-1 .. "bo. These edges are said to be in dimension j, and

i _ and in are said to be dimension j neighbors of i. Special cases include rings (Nk,1), hypercubes

(N2,,_), two and three dimension toruses (Nk,2, Nk,3). It is useful to imagine Nj,,,_ as a collection of

interconnected rings resident in an n-dimensional space.

A partition of Nk,,_ into p subdomains is a collection of nonempty node subsets T_ = { Po, • •., Pp-_ }.

Abusing usual notation, we'll denote that an edge e has at least one endpoint in Pi by e E Pi, and

define the indicator function l(e, Pi) to be one if exactly one of e's endpoints is in f_., and zero

otherwise. Then we denote the number of external edges in Pi by

Ext(P ) =
eEP_

denote the number of internal edges as

and define the cost of Pi as

Int(Pi) = _-_(1- I(e, Pi)),
eE Pi

c( =  ,,IP l + Ext(

Here we weight the cost of each node by w to reflect the execution cost, where the communication

cost associated with one edge is unity. The cost of P is taken as

B(_) = max C'(P,).
O<i<p

Given p and w, we wish to find the partition _o that minimizes B(T').

A very similar special case of this problem has been studied in the context of partitioning grids

arising from the discretization of domains for the solution of partial differential equations, by Reed

et al. [14]. It is instructive to consider the subtle difference in 'the problem specification, because

the conclusions reached differ greatly.

The partitions considered by Reed et al. all tessellate a two-dimensional domain (Nk,2 without

wraparound edges) with a common shape, e.g., rectangles, squares, or hexagons. The computation
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Figure 1: Hexagon partition in a 2(1 mesh

to coninmnication ratio of different shapes are analyzed, but the comnmnication cost is taken as

the sum (over all grid points in the subgraph) of the cost of communicating each boundary point.

This may vary from point to point. For instance, Figure 1 illustrates some hexes; point A has two

edges cut, but since the endpoints of both edges are in the same hex, Reed et al. count the cost as

one, not two. Point B has two edges cut, but both of these are counted. With this measure, the

communication cost of a hex is taken as 10 although 14 edges are cut. Shapes like hexagons are

shown to achieve a better computation/conmmnication ratio than do squares. This is interesting,

because in this case our results give general conditions tinder which squares are optimal, a significant

difference due entirely to a minor change in the model of communication costs.

Reed et al.'s measure makes sense in its presented context where a specific numerical algorithm

cMls for the exchange of boundary value grid points. In other contexts unique edges fi'om a node

represent unique pieces of information, and the cost function we adapt is appropriate. We are aware

of algorithms in computational fluid dynamics, for instance, where there is a unique "flow" along

every edge in a niesh. Most of the grid partitioning conimunity counts cut edges.

While our results identify general conditions under which equi-partitions are optimM for the

bottleneck measure, it is worthwhile noting that this need not always be the case. An example

that partitions a 6 x 6 mesh into 3 partition elements is shown in Figure 2. Here the unbalanced

partition has bottleneck cost 28w + 10, the balanced partition has bottleneck cost 12w + 12. The

unbalanced partition is better whenever w < 6/19. This exaniple illustrates the tension between

partitioning to minimize computational imhalance and colnnlunic&tion overhead. Our goal is find

general conditions under which obvious equi-partitions are optimal with respect to the bottleneck
nietric.
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Figure 2: Equal sized partitions need not be optimal

3 Preliminaries

We first estal)lish some preliminary results. These depend on k in a way that is captured by defining
Tk = 1 for k--- 2, and Tk= 2fork > 2.

Observation 1 Let Abc any set of nodes in Nk,,_. If ]A] = m and Int(A) = v, then Ext(A) =

Tkmn - 2v.

Lemma 2 Let A be any set of nodes in Nk,,_, k # 3, with [A I = m. Then Int(m) < (mlogm)/2.
This bound is achieved when m = '2j for some j < n.

Proof: We induct on m. The base case of m = 1 is trivially satisfied. Suppose then that the claim

is true for any set of size m - 1 or smaller, and choose any node set A with [A[ = m. Choose any

two nodes x and y in A, consider their indices expressed in base-k notation and find a dimension

j in which their indices differ in that notation. Let a and b be the dimension j index for x and y

respectively. Viewing these indices as lying on a "ring" 0 - l - 2 ..... (k - 1) - 0, cut the ring

into two sequences of length 2 or greater, one of which contains a, and one of which contains b.

Partition A into sets X, and Xb, with X, comprised of all nodes whose indices in dimension j lie

in the same range as a's, and Xb = A-X,. Let u and m-ube the number of nodes in X and

Y respectively. By the induction hypothesis, X_ has no more than (u log u)/2 internal edges, and

Xb has no more than ((m - u) log(m - u)/2) internal edges. If k = 2 or if k > 4 there can be no

more than rain{u, m - u} edges between X, and Xb, because any such edge has to connect nodes

whose indices (lifter only in dimension j, and which must be adjacent on the ring we partitioned.

Any node in either set can have at most one edge to the other set. It follows that A can have no
more than

B,,_ (u) = (u log u)/2 + ((m - u)log(m - u))/2 + rain {u, m - u}.

Now the fimction

fro(q) = (qlogq)/2 + ((m- q)log(m- q))/2 + q

defined over q 6 [0, m/2] completely describes the bound as a fimction of q = rain{u, m - u}.

(',onsidered as a continuous function of q, analysis of derivatives reveals f,,_(q) to be convex over
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[O,m/2], and is hence maximized at the endpoint q = m/2. Simple algebra shows that B,,_(u) <_

f,,_(m/2) = (mlogm)/2, completing the induction. Finally, observe that the same argument holds

in the case of k = 2 by relaxing tile re(tuirement that the dimension j ring be cut into lengths of

2 or greater--there is only one cut possible, and it is still possible for a node in Xa or Xb to have

at most one edge between X_ and Xb. Finally, observe that when m = 2 j, j _< n, the bound is

achieved by any set A that forms a j-dimensional hypercul)e in Nk,,_. |

Another 1)ound is also useflfl. We will say that set A is nowhere completed if A contains no

completed rows, i.e., no dimension j for which there are k" nodes whose base-k indices all agree

except in dimension j.

Lemma3 Let A be any set of nodes in Nk,,_, k > 2 with [A I = m such that A is nowhere

completed. Then Int(A) <_ n(m - m('_-_)/'_). This bound is achieved whenever k is divisible by q,

and m = (k/q) '_.

Proofl By observation 1, maximizing Int(A) is equivalent to minimizing Ext(A); we seek a set A'

with m nodes minimizing Ext(A'). A _ must be connected, otherwise we could always find a node set

with smaller external edge count by translating a connected component linearly through Nk,n until

it eliminates one or more external edges by becoming adjacent to another connected component.

Now represent the set as a "Manhattan polyhedron" (every face is parallel to some axis) formed t)y

a collection of unit cubes in _'_, each cube representing one node, and two cubes sharing a face if

there is an edge between the nodes they represent. Figure 3 illustrates this construct. The number

of external edges is thus equal to the number of exposed faces--the surface area of the Manhattan

polyhedron. Now the surface area 5/,,_ of any Manhattan polyhedron in TC _ is at least as large as

that, say S_, of the smallest "orthogonal polyhedron" (a rectangular solid in 7_ '_) that completely

encloses it. Let v > m he the volume of this orthogonal polyhedron. The polyhedron with volume

v forming a perfect cube in 7_ '_ has surface area 5;_ _< .q_. But the orthogonal polyhedron with

volume m forming a perfect cul)e in _'_ has smaller surface area yet. This minimal surface area

is 2rim ('_-1)/'_ 5 Ext(A). The claimed bound on Int(A) follows from observation 1. Furthermore,

whenever k is divisible by q, and m = (k/q) '_ we can construct a (k/q) x (k/q) x ...(k/q) cube

with exactly m nodes, in which case the t)ounds are exact. |

Our ol)timafity results hold when the numt)er of nodes in each partition set, m = k'_/p, is

small enough to ensure that the optima] partition sets are nowhere completed. Since some internal

edges are gained by forming a completed row (due to wrap-around), simple extensions to geometric

arguments like those of Lemma 3 are not sophisticated enough to analyze these tradeoffs. ]towever,

a simple argument shows that for sets of size m _< k, the configuration minimizing external edges

need not have any completed rows.

Lemma 4 For all k >_ 2 '_ and n >_ 2 there exists a nowhere completed subset of k nodes in Nk,,_

with minimal external edges.

Proofi When k _> 2 '_ (and n _> 2), the single configuration of k nodes that completes a row has

exactly 2k(n - 1) external edges, whereas the proof of Lemma 3 shows that the set of k nodes which

is as tubelike as possible has no more than 2nk ('_-1)/'_ external edges. Now 2nk (''-1)/'_ _< 2k(n- 1)



Node set in 3d cube

External edges are highlighted

Manhattan polyhedron

Exposed faces represent external edges

Figure 3: Geometric interpretation of a connected node set

if and only if (l/k) _< (1 - l/n) '_. But 1/k <_ 0.25 for all k _> 4, and (1 - l/n) '_ increases monoton-
ically in n (converging to e -a) and (1 - 1/2) 2 = 0.25. •

['roofs that optimally configured sets of size m > k may be nowhere completed are beyond the

scope of this note. However, we can l)ut a lower bound on Ext(A) for IA[ > k, and analyze the
relative error of this bound.

Lemma 5 Let k >_4. For all m > 2" and n >_ 2, let E,,,,,, be the minimal value of Ext(A) among

all node sets A with [A I = m. Then

2nm(,__ 1)/,_ 2m
k

- -- < E._,,_ <_ 2am (n-U/'_.

Proofi The upper bound follows from the observation that among all sets A that are nowhere

completed, 2am ('_-t)/'_ is an upper bound on Ext(A), and thus on Em,,_. The lower bound follows

by subtracting from this the maximum number of external edges that may be deleted by completing

a row--two per possible row. •

Now the relative difference between the upper and lower bound is 1 -ml/'_/(nk), which increases

in m. Values of m we are most interested in derive from equi-partitions where every dimension is

sliced identically. Let q divide k evenly, and let m = (k/q) '_. In this case the relative difference is

1 - 0.5/(qn). Consequently the bounds become tighter with increasing dimension size, n, and with

decreasing partition size set (k/q) '_.

Let A be any set of nodes with [A I = m. From the observations above we see that

C'l(m) = wm -4-Tk,nn - mlogm < C(A) for all m = 1,2,.-.,k '_,

and

C2(m) = wm+ Tkmn - n(m - m ('_-1)/'') _< C(A) ' for an m = 1,2,..., k.

Observe that C2(m) is monotone non-decreasing, as d-_C.2(m) >_ 0. Another result describes the

rela'donship between C1 and C2.



Lemma 6 For all m E [1,2n], Cl(m) >_ C2(m). For all m > 2'_, (',1 (m) _< C.2(m).

Proof: Analysis of derivatives with respect to m shows that C_(I) _> (2(1);" since ('.1(1) = C2(1)

we infer that initially, for x > 1, (Tl(x) > C2(x). Since both functions are continuous this donfi-

nance is maintained until the first m such that Cl(m) = C'2(m). Algebra shows that the unique

solution m > 1 is m = 2 '_. At this 1)oint (;'_(2 '_) < C2(2 ), an(/ the dominance reverses. •

4 Analysis of Cost Function

Since both C, (m) and C2(m) are lower bounds on C(m), the function C3(m) = max{(:, (m), C2(m)}

is a better composite bounding function. Previous observations have established that

=Ca(m)
• [ CS(m)

for m < 2"
for m > 2 _

Furthermore, it is not difficult to show that C3(m) is concave over m E [1,2'_], and that (;_(m) is

increasing over m C [2'L k'q. Furthermore we also know that when k _>4, C:_(m) is a lower bound

on the cost of node set A with IA[ = m < k elements.

Our strategy now is to identify values of m < k for which it is possible to partition Nk,,_ into

k"/m isomorphic subgraphs, such that C'(m) = C:3(m). Since C3(m) is known to be increasing for

m > 2n, we determine conditions under which C3(m) is increasing over [1,2'_]. Considered as a

continuous flmction, the first derivative of C3(m) for m E [1,2 '_] is

d

_-_mCl(m) = w + r,_.n -logm- l/In 2.

This function decreases in m, and so will be non-negative over [1,2 '*] if it is non-negative at m = 2 n.

The latter condition is satisfied whenever u, + n(Tk - 1) > 1/ln 2. Thus

Lemma 7 If w > 1/ln 2 or ilk > 2 and n > 1, then C3(m) is everywhere monotone non-dccrcasing

over [1, k'_].

Monotonicity of Ca(m) can be exploited, for if node sets P0,.-., I'p-1 have sizes m0,..., my_l,

then max{C3(m0),...,C3(mv_l)} is minimized when the node sets have equal sizes. To coml)lete

the analysis we simply identify conditions on p that ensure that C3(m) = C(Pi) for all i = 0,..., p-

1, and that Nk,,_ can be partitioned into isomorphic node sets with this cost. Such partitions must

be optimal.

Theorem 8 The following are optimal partitions of Nk,n with rcspcct to the bottleneck cost.

* If some condition of Lemma 7 is satisfied, k is even, and p = k'_/2 j with j <_ n, then N,..n

may be partitioned into isomorphic hypercubcs of dimension j.

• If some condition of Lemma 7 is satisfied, there is integer q such that (k/q) 1/'_ is intcgcr and

p = (k/q) ['_-_)/'_, then Nk,,_ may bc partitioned into isomorphic blocks of shape' (k/q) 1/'_ x

× ... ×

7



The partitions identified by this theorem are quite intuitive. They divide Nk,,_ uniformly into

equally sized sets of nodes, and the nodes in a set are clustered tightly. If the number of nodes in the

set is less than 2 '2, the nodes form a hypercul)e of some dimension no greater than n. If the number

of nodes exceeds 2n (but is no greater than k), they form a perfect cube in an n-dimensional space.

However, while these optimal partitions are intuitive, we have already seen that perfectly balanced

partitions need not be ol)timal. It is also noteworthy that the requirement on w for optimality

disappears when p is small enough (p < k('_-l)/'_), or when k > 2.

A final result addresses the fact that restricting the nulnber of nodes per processor to k or fewer

may be overly conservative. For k < m <_ (k/2) '_ we can bound the deviation from optimal of cubic

equi-partitions.

Lemma 9 Let q divide k evenly, and consider the partitioning into adjacent blocks of size (k/q) x

• .. (k/q). Then the bottleneck cost is no more than lO0/(nq)% larger than optimal.

Proofi Using m = (k/q) Lemma 5 shows that the increase in external communication cost of the

cut)ic partition is no more than 100/(nq)%. |

5 Conclusions

/_-ary n-cubes are regular graph structures that are found in numerous contexts, especially in

descriptions of comnmnication networks. Partitioning of such graphs is a l)roblem that arises in

network design, and in parallelized simulation of such networks. This paper examines the problem

of identifying optimal partitions of N_:,,_ with respect to the bottleneck metric. Our investigations

identify two points of interest. First, existing work on partitioning regular graphs for parallel

processing has used a subtly different measure of communication, which leads to very different

results than ours. Secondly, while the partitions we identify as optimal are intuitive, we show

by example that equi-partitions need not always be optimal. Our results then help to delineate

problems with intuitive optimal partitions from those with non-intuitive optimal partitions.

Open remaining problems that we are pursuing include dealing more conclusively with the effect

of completing rows, and with deternfining the minimal value of w ensuring that equi-partitions are

optimM.
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n-cube graphs with uniformly weighted nodes. Given mild restrictions on the node weight and number of processors,
we identify partitions yielding the smallest bottleneck. We also demonstrate by example that some restrictions are

necessary for the partitions we identify to be optimal. In particular, there exist cases where partitions that evenly

partition nodes need not be optimal.
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